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 Sinusoidal signal: 
𝑔 𝑡 𝐴cos 2𝜋𝒇𝟎𝑡 𝜙

 Frequency 𝒇𝟎

 Generalized sinusoidal signal:
𝑔 𝑡 𝐴cos  𝑡

 Frequency ?
 Observation: Frequency value may vary as a function of time.

 “instantaneous frequency”

 Why do we need to find the instantaneous frequency?
 Analyze Doppler effect (or Doppler shift)
 Implement frequency modulation (FM)
 where the instantaneous frequency will follow the message 𝑚 𝑡 .
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At t = 2,   f = t2 = 4 Hz?

Correct?

By matching the terms 
with cos 2𝜋𝒇𝟎𝑡 , 
you may guess that 
𝒇 𝒕 𝑡 . 

Figure 38
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 Sinusoidal signal: 
𝑔 𝑡 𝐴cos 2𝜋𝒇𝟎𝑡 𝜙

 Frequency 𝒇𝟎

 Generalized sinusoidal signal:
𝑔 𝑡 𝐴cos  𝑡

 Frequency ?
 Observation: Frequency value may vary as a function of time.

 “instantaneous frequency”

 Why do we need to find the instantaneous frequency?
 Analyze Doppler effect (or Doppler shift)
 Implement frequency modulation (FM)
 where the instantaneous frequency will follow the message 𝑚 𝑡 .
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 How does the formula 𝒇 𝒕 𝝓 𝒕 work?

 Technique from Calculus: first-order (tangent-line) 
approximation/linearization
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 How does the formula 𝒇 𝒕  𝑡 work?

 Technique from Calculus: first-order (tangent-line) 
approximation/linearization

 When we consider a function  𝑡 near a particular time, say, 𝑡
𝑡 , the value of the function is approximately

 Therefore, near 𝑡 𝑡 ,

 Now, we can directly compare the terms with cos 2𝜋𝒇𝟎𝑡 𝜙 .
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 For example, for t near t = 2,
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 For example, for t near t = 2,
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 For example, for t near t = 2,
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 Suppose we want to find .

 Let .

 Note that .

 Approximation: 

 15.9 is near 16.






.

 MATLAB: >> sqrt(15.9)
ans =

3.987480407475377
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