Instantaneous Frequency

- Sinusoidal signal:

$$
g(t)=A \cos \left(2 \pi f_{0} t+\phi\right)
$$

- Frequency $=f_{0}$
- Generalized sinusoidal signal:

$$
g(t)=A \cos (\theta(t))
$$

- Frequency = ?
- Observation: Frequency value may vary as a function of time.
- "instantaneous frequency"
- Why do we need to find the instantaneous frequency?
- Analyze Doppler effect (or Doppler shift)
- Implement frequency modulation (FM)
- where the instantaneous frequency will follow the message $m(t)$.

Instantaneous Frequency

$$
x_{1}(t)=\cos \left(2 \pi t^{2} t\right)
$$

Instantaneous Frequency

$$
x_{1}(t)=\cos \left(2 \pi t^{2} t\right)
$$

Instantaneous Frequency

$$
x_{1}(t)=\cos \left(2 \pi t^{2} t\right)
$$

Instantaneous Frequency

Instantaneous Frequency

12 Hz ?

Instantaneous Frequency

- Sinusoidal signal:

$$
g(t)=A \cos \left(2 \pi f_{0} t+\phi\right)
$$

- Frequency $=f_{0}$
- Generalized sinusoidal signal:

$$
g(t)=A \cos (\theta(t))
$$

- Frequency = ?
- Observation: Frequency value may vary as a function of time.
- "instantaneous frequency"
- Why do we need to find the instantaneous frequency?
- Analyze Doppler effect (or Doppler shift)
- Implement frequency modulation (FM)
- where the instantaneous frequency will follow the message $m(t)$.

First-order (straight-line) approximation/linearization

- How does the formula $f(t)=\frac{1}{2 \pi} \frac{d}{d t} \phi(t)$ work?
- Technique from Calculus: first-order (tangent-line) approximation/linearization

First-order (straight-line) approximation/linearization

- How does the formula $f(t)=\frac{1}{2 \pi} \frac{d}{d t} \theta(t)$ work?
- Technique from Calculus: first-order (tangent-line) approximation/linearization

- When we consider a function $\theta(t)$ near a particular time, say, $t=$ t_{0}, the value of the function is approximately

$$
\theta(t) \approx \underbrace{\theta^{\prime}\left(t_{0}\right)}_{\text {slope }}\left(t-t_{0}\right)+\theta\left(t_{0}\right)=\underbrace{\theta^{\prime}\left(t_{0}\right)}_{\text {slope }} t+\underbrace{\theta\left(t_{0}\right)-t_{0} \theta^{\prime}\left(t_{0}\right)}_{\text {constant }}
$$

- Therefore, near $t=t_{0}$,

$$
\cos (\theta(t)) \approx \cos \left(\theta^{\prime}\left(t_{0}\right) t+\theta\left(t_{0}\right)-t_{0} \theta^{\prime}\left(t_{0}\right)\right)
$$

- Now, we can directly compare the terms with $\cos \left(2 \pi f_{0} t+\phi\right)$.

First-order (straight-line)

 approximation/linearization- For example, for t near $t=2$,

$$
\left.2 \pi t^{3} \approx 2 \pi\left(3 t^{2}\right)\right|_{t=2}(t-2)+\left.2 \pi t^{3}\right|_{t=2}=2 \pi(12) t-2 \pi(16)
$$

First-order (straight-line)

 approximation/linearization- For example, for t near $t=2$,

$$
\left.2 \pi t^{3} \approx 2 \pi\left(3 t^{2}\right)\right|_{t=2}(t-2)+\left.2 \pi t^{3}\right|_{t=2}=2 \pi(12) t-2 \pi(16)
$$

First-order (straight-line)

 approximation/linearization- For example, for t near $t=2$,

$$
\left.2 \pi t^{3} \approx 2 \pi\left(3 t^{2}\right)\right|_{t=2}(t-2)+\left.2 \pi t^{3}\right|_{t=2}=2 \pi(12) t-2 \pi(16)
$$

Same idea

- Suppose we want to find $\sqrt{15.9}$.
- Let $g(x)=\sqrt{x}$.
- Note that $\frac{d}{d x} g(x)=\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.
- Approximation: $g(x) \approx g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+g\left(x_{0}\right)$
- 15.9 is near 16.
- $\sqrt{15.9}=g(15.9)$
- $\approx g^{\prime}(16)(15.9-16)+g(16)$
$-\frac{1}{2 \sqrt{16}}(-0.1)+\sqrt{16}=-\frac{0.1}{8}+4=3.9875$
- MATLAB: >> sqrt(15.9)
ans $=$
3.987480407475377

